Notes: Spheres
\qquad Sphere : is a set of all points equidistant from a fixed point called the center. Radius of a sphere is the length of the line segment from the center of the sphere to any point on the sphere.
A circle is a set of all points in a plane \qquad equidistant from a fixed point in the plane called the center.
A hemisphere is half of a sphere.

Find each measurement. Give your answer in terms of π.

1. Surface Area: $256 \pi \mathrm{~cm}^{2}$

$$
\begin{aligned}
S & =4 \pi r^{2} \\
& =4 \pi 8^{2} \\
& =256 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

2. the radius of a sphere with volume 7776π in ${ }^{3}$

Volume: \qquad

$$
V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi 8^{3}
$$

$$
\begin{array}{rlrl}
V & =\frac{4}{3} \pi r^{3} & \left(\frac{3}{4}\right) 77767 & =\frac{4}{3}-r^{3}\left(\frac{3}{4}\right) \\
7776 \pi & =\frac{4}{3} \pi r^{3} & 5832 & =r^{3} \\
r & =\sqrt[3]{5832}=18
\end{array}
$$

3. Find the volume of a sphere with surface area $324 \pi \mathrm{in}^{2}$.

$$
\begin{aligned}
S & =4 \pi r^{2} \\
324 \pi & =4 \pi r^{2}
\end{aligned}
$$

$$
\frac{324 r}{4}=\frac{4 \pi r^{2}}{4} \quad V=\frac{4}{3} \pi r^{3}
$$

$$
\begin{array}{ll}
r^{2}=81 \\
r=\sqrt{81}=9 & V=\frac{4}{3} \pi 9^{3} \\
& =070 \pi
\end{array}
$$

4. Volume: \qquad $V=\frac{4}{3} \pi r^{3}$
Surface Area: \qquad $=972 \pi$ in 3

$$
\begin{aligned}
& S_{\substack{\text { hemishoree } \\
\text { withe } \\
\text { base }}}=\frac{4 \pi r^{2}}{2}=\frac{4 \pi 2^{2}}{2}=8 \pi \\
& B=\pi r^{2}=\pi 2^{2}=4 \pi \\
& S_{\text {total }}=8 \pi+4 \pi=12 \pi+t^{2} \\
& \text { with base }
\end{aligned}
$$

5. Find the surface area of a sphere with a great circle that has an area of $49 \pi \mathrm{mi}^{2}$.

$$
49 \pi=\pi r^{2}
$$

$$
4 a=r^{2}
$$

$$
r=\sqrt{49}
$$

$$
r=7
$$

Describe the effect of each change on the given measurement of the figure.

If: The radius is multiplied by 4.
6. Surface Area: \qquad Volume: \qquad

7. Find the surface area and volume of the composite figure.
 Surface Area

$$
\frac{\text { Volume }}{V_{v e n}=\frac{4}{5} \frac{\pi r^{3}}{2}}
$$

$$
V_{\text {revision }}=\frac{4}{3} \frac{\pi r^{3}}{2}
$$

$$
\begin{aligned}
L A_{\text {cylinder }} & =2 \pi r h \\
& =2 \pi(a)(a)=108 \pi
\end{aligned}
$$

$$
B=\pi r^{2}
$$

$$
=\pi 6^{2}=36 \pi
$$

$$
S_{\text {Total }}=72 \pi+108 \pi+36 \pi
$$

$$
=216 \pi \mathrm{in}^{2}
$$

$$
\begin{aligned}
& S_{\text {heisishe }}=\frac{4 \pi r^{2}}{2} \\
& \begin{array}{ll}
=\frac{4 \pi 6^{2}}{2}=72 \pi \quad & \quad \begin{array}{l}
\text { hemisphere } \\
2
\end{array} \quad \frac{\frac{4}{3} \pi 6^{3}}{2}=\frac{288 \pi}{2}=144 \pi
\end{array} \\
& V=\frac{14}{}=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

