Notes: Area of Regular polygons

The center of a regular polygon is equidistant from the vertices.
The apothem is the distance from the center to a side. A central angle of a regular polygon has its vertex at the center, and its sides pass through consecutive vertices. Each central angle measure of a regular n-gon is $\frac{360^{\circ}}{n}$.

Regular pentagon $D E F G H$ has a center C, apothem $B C$, and central angle $\angle D C E$.

Find:
$m \angle F C E=\frac{360}{5}$
interior angle
Central $=72^{\circ}$
angle

Area Regular Polygon

The area of a regular polygon with apothem a and perimeter P is $A=\frac{1}{2} a P$.

Regular Triangle

Review: $30-60-90$ triangles

$$
\begin{array}{rlrl}
x \sqrt{3} & =9 \\
\sqrt{3} & H_{y p} & =2 x \\
& =2(3 \sqrt{3}) \\
x=\frac{9}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{9 \sqrt{3}}{3}=\sqrt[3 n]{3} & & =6 \sqrt{3}
\end{array}
$$

Review: 45-45-90 Δ

EXAMPLE 1 Find the area of the equilateral triangle.

\qquad
$s=18$

$$
P=18 \cdot 3=54
$$

$a=\frac{4 \sqrt{3}}{24}$
$s=24$
$P=24 \cdot 3=72$

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(4 \sqrt{3})(72) \\
& =144 \sqrt{3}
\end{aligned}
$$

Find the area of the given shapes:
Ex.

Donit need hypotenuse

Square side $=9(2)=18$

$$
A=\frac{1}{2} a P
$$

leg	leg	Hyp
x	x	$x \sqrt{2}$
5	5	$5 \sqrt{2}$
See previous page		

Ex.

$$
a=6 \sqrt{3}
$$

$s=12$

x	$x \sqrt{3}$	$2 x$
6	$6 \sqrt{3}$	12

See previous page

$$
P=12(6 \text { sides })=72
$$

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(6 \sqrt{3})(72) \\
& =216 \sqrt{3} \mathrm{~cm}^{2} \\
& \approx 374.1 \mathrm{~cm}^{2}
\end{aligned}
$$

A regular hexagon has a perimeter of 60 cm . Find it s area.

x	$x \sqrt{3}$	$2 x$
4	$4 \sqrt{3}$	8

See previous page

$$
\begin{aligned}
a & =4 \sqrt{3} \\
s & =8 \\
P & =8(6 \text { sides }) \\
& =48
\end{aligned}
$$

$$
\begin{array}{ll}
a=5 \sqrt{3} \\
s=60 / 6=10 \\
P=60 & \\
\rightarrow S L=10 / 2=5 & \\
\hline
\end{array}
$$

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(5 \sqrt{3})(60) \\
& =150 \sqrt{3} \mathrm{~cm}^{2} \\
& =2598 \mathrm{~cm}^{2}
\end{aligned}
$$

